N-D Arrays

Arrays with more than 2-dimensions are referred to as
– "N-D arrays", or
– "multidimensional arrays"

Suppose we pictorially denote a 4-by-7 array as

Then a 4-by-7-by-6-by-5 array would be depicted as

Array Referencing

http://jagger.me.berkeley.edu/~pack/e177

Copyright 2005-2008 Andy Packard. This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.
Full-Index Reference

Let A be a multidimensional array. Consider

\[N = \text{ndims}(A); \quad \text{szA} = \text{size}(A) \]

LHS = expr involving \(A(\text{idx1}, \text{idx2}, \ldots, \text{idxM}) \)

If \(M = N \), then it is a **full-index reference**
- The \(\text{idxK} \) vector must be integer values between 1 and \(\text{szA}(K) \)
 - Row/column does not matter (here)
 - Actually, it can be an array, but Matlab reshapes it into a vector

What is \(\text{size}(A(\text{idx1}, \text{idx2}, \ldots, \text{idxM})) \)?

\[\text{[length(idx1) length(idx2) \ldots length(idxM)]} \]

Standard rectangular row/column/page/book/… selection

\[A = \text{rand}(4,7,6,5); \]
\[B = A([1 2],[3 4 7],[1 3 6],[2 3 5]); \]

Reduced Index Reference

Let A be a multidimensional array. Consider

\[N = \text{ndims}(A); \quad \text{szA} = \text{size}(A) \]

LHS = expr involving \(A(\text{idx1}, \text{idx2}, \ldots, \text{idxM}) \)

If \(M < N \), then
- A **reduced-index reference** (if \(M = 1 \), single-index reference)
- For \(K \leq M \)
 - The \(\text{idxK} \) vector must have values between 1 and \(\text{szA}(K) \)
 - \(\text{idxK} \) acts as a reference into the \(K \)th dimension
- \(\text{idxM} \) must contain integers, between 1 and \(\prod(\text{szA}(M+1:N)) \)
- \(\text{idxM} \) acts as a linear order reference into dimensions
 \[M, M+1, \ldots, N-1, N \]

What is \(\text{size}(A(\text{idx1}, \text{idx2}, \ldots, \text{idxM})) \)?

\[\text{[length(idx1) length(idx2) \ldots length(idxM)]} \]

Multidimensional Referencing with :

Let A be a multidimensional array. Consider

\[N = \text{ndims}(A); \quad \text{szA} = \text{size}(A) \]

LHS = expr involving \(A(\text{idx1}, \text{idx2}, \ldots, \text{idxM}) \)

Suppose idxK is a single : (colon)
- If \(K = M \) and \(M = N \) (last index of full-index reference), then
 - The colon is expanded to mean \((1: \text{szA}(N))' \), as expected
- If \(K < M \) (ie., not the last index), then
 - The colon is expanded to mean \((1: \text{szA}(K))' \)
- If \(K = M \), and \(M < N \) (last index of reduced-index reference), then
 - The colon is expanded to \((1: \prod(\text{szA}(K:N)))' \)

Note: The ‘’ is actually only important in the single-index

\[A = \text{rand}(4,3) \]
\[A(:) \quad \% 12-by-1 \]
\[A(1:12) \quad \% 1-by-12 \]

Single-Index Reference

Let A be a multidimensional array with \(N = \text{ndims}(A); \)
\(\text{szA} = \text{size}(A), \) and a RHS expr involving \(A(\text{idx1}). \)

Then
- \(\text{idx1} \) must contain integers, between 1 and \(\text{prod(szA)} \)
- If \(\text{idx1} \) is a scalar, then \(A(\text{idx1}) \) is a scalar, namely that element of the array A, using “linear order reference”
- Generally, the value of \(B = A(\text{idx1}) \) satisfies
 \[\text{size}(B) = \text{size}(\text{idx1}), \quad \text{and} \]
 \[B(k) = A(\text{idx1}(k)) \]
 for each \(k \)
- Unless \(A \) has only 1 nonsingleton dimension and \(\text{idx1} \) is a row/column, then \(B \) will have the same singleton dimensions as \(A \)

Examples
- scalar, so linear order reference

\[A = \text{rand}(3,4); \]
\[A([1 8 11]), \quad A([1 8 11]’) \]
\[\text{idx2} = \text{cat}([1 8 11],[2 9 10],3); \quad \% 1-by-3-by-2 \]
\[A(\text{idx2}) \]

Reduced Index Reference

Example

\[A = \text{rand}(6,5,4,3,2); \quad \% 6-by-5-by-4-by-3-by-2 \]
\[A(1:4,3:5,10) \quad \% 4-by-3 \]

Here,
- 1:4 references 4 (of 6) rows in A
- 3:5 references 3 (of 5) columns in A
- 10 references, using linear ordering, the 2,3,1 entry of the remaining 4-by-3-by-2 dimensions

Alternatively, consider

\[A(1:2,3:4,[1 4],[6 4 1]) \quad \% 2-by-2-by-3 \]

\[A(2,3:end,4) \quad \% A(2,3:5,4), \quad 1-by-3-by-2 \]

Multidimensional Referencing with end

Same setup again

Suppose idxK uses the keyword end
- If \(K = M \) and \(M = N \) (last index of full-index reference), then
 - end is expanded to mean \(\text{szA}(N) \), as expected
- If \(K < M \) (ie., not the last index), then
 - end is expanded to mean \(\text{szA}(K) \), as expected
- If \(K = M \), and \(M < N \) (last index of reduced-index reference), then
 - end is expanded to \(\text{prod(szA}(K:N)) \)

Examples
- A = randn(4,5,6);
 A(end) \quad \% same as A(120)
 A(2:4,end-1:end) \quad \% same as A(2:4,[29 30])
 A(2,3,end,4) \quad \% A(2,3,5,4), \quad 1-by-3-by-1 (1-by-3)