This is kind of long. You’ll thank me later...

1. If A is $m \times n$, and $m < n$, show that A cannot have a left inverse. Similarly, if A is $m \times n$, and $m > n$, show that A cannot have a right inverse.

2. Let M be an $n \times n$ matrix of integers. Assume $\det(M) \neq 0$, so M is invertible (when viewed as a matrix of real, or complex, or rational numbers). Show that M^{-1} is itself a matrix of integers if and only if $\det(M) = \pm 1$.

3. Let $S_n^{n \times n}$ be defined as

$$S_n^{n \times n} := \left\{ A \in \mathbb{R}^{n \times n} : A = A^T \right\}$$

(a) Show that $S_n^{n \times n}$ (along with the field \mathbb{R}) is a vector space.

(b) Find a basis for the space.

(c) What is the dimension of the space?

4. Let

$$A = \begin{bmatrix}
1 & 0 & -1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 \\
-1 & 1 & 0 & 1 & 1
\end{bmatrix}$$

Find a basis for $\{ x \in \mathbb{R}^5 : Ax = 0 \}$

5. Suppose $A \in \mathbb{C}^{n \times n}$. Show that A is invertible if and only if $x = 0_{n \times 1}$ is the unique solution to $Ax = 0_{n \times 1}$.

6. Suppose (V, F) is a vector space, $v_1, v_2 \in V$, and the set $\{v_1, v_2\}$ is a linearly independent set. For some $a, b, c, d \in F$, define $w_1 := av_1 + bv_2, w_2 := cv_1 + dv_2$. Show that $\{w_1, w_2\}$ is a linearly independent set if and only if $ad \neq bc$.

7. Let (V, F) be a finite dimensional space. Suppose $\{v_1, v_2, \ldots, v_n\}$ be a basis for V. Let $A \in F^{n \times n}$. As usual, let a_{ij} denote the (i, j) element. Define vectors $\{u_i\}_{i=1}^n$ by the relation

$$u_i := \sum_{j=1}^n a_{ij}v_j$$

Show that $\{u_1, u_2, \ldots, u_n\}$ is a basis for V if and only if A is invertible.

8. Let V be the set of polynomials with real coefficients of degree at most 3.

(a) Convince yourself that this is a vector space (over the field \mathbb{R})

(b) Using t as the indeterminate variable, show that $\{1, t, t^2, t^3\}$ is a basis for V.

(c) Show that $\{1, t - t^2, t + 2t^2, t^3 - t + 1\}$ is a basis for V.

1
(d) Define a map \mathcal{A}, mapping V to V by the rule

$$\mathcal{A}(v) := \frac{d}{dt} (tv)$$

Show that the map is a linear map.

(e) Find the matrix representation of \mathcal{A} with respect to the basis choice in part (8b).

(f) Find the matrix representation of \mathcal{A} with respect to the basis choice in part (8c).

(g) Calculate the determinants of both representations of \mathcal{A}.

9. Using the change-of-basis formula, show that if $\mathcal{A} \in \mathcal{L}(V, V)$, where V is a finite dimensional vector space, then for any two matrix representations of \mathcal{A}, denoted A_1 and A_2, the determinants satisfy

$$\det A_1 = \det A_2$$

10. Let A, B, C be matrices of appropriate size. In each case, assume that X is restricted to be a matrix of appropriate dimension so that the expression is valid. Which of the following maps are linear?

(a) $f(X) := AX + XB$

(b) $f(X) := AX + BXC$

(c) $f(X) := AX + XBX$

(d) $f(X) := A'XA - X$

(e) $f(X) := \text{tr}(AX)$

11. Let (V, F) be a finite dimensional vector space, and $\mathcal{A} \in \mathcal{L}(V, V)$. Assume that \mathcal{A} is invertible, and denote its inverse as \mathcal{A}^{-1}. Let $\{v_1, v_2, \ldots, v_n\}$ be a basis for V. Associated with any $\mathcal{B} \in \mathcal{L}(V, V)$, use $M(\mathcal{B})$ to denote the matrix representation of \mathcal{B} in this basis. Show that (as matrices)

$$[M(\mathcal{A})]^{-1} = M(\mathcal{A}^{-1})$$

12. (V, F) is a vector space, and $R, T, S \subset V$ are subspaces. If $S \subset R$, show that

$$R \cap (S + T) (R \cap S) + (R \cap T)$$

13. Suppose (V, F) and (W, F) are vector spaces, and $\mathcal{A} \in \mathcal{L}(V, W)$. $S \subset W$ is a subspace. Define the inverse image of S by \mathcal{A} as

$$\{v \in V : \mathcal{A}(v) \in S\} \subset V$$

This is denoted $\mathcal{A}^{-1}(S)$, but is not to be confused with the inverse of \mathcal{A} (since \mathcal{A} may not be invertible).
(a) Show that this is a subspace of V

(b) If V and W are finite dimensional, show

$$\dim \left(A^{-1}(S) \right) = \dim (\ker A) + \dim (S \cap \text{Range } A)$$