1. Suppose $v \in \mathbb{C}^n$. Show that
\[
\|v\|_\infty \leq \|v\|_2 \leq \|v\|_1
\]
Also, find a vector v such that all of the norms are equal, showing that the inequalities are “tight”.

2. Let $A \in \mathbb{C}^{n \times n}$. For $k = 1, 2, \ldots$, define $\mathcal{N}_k := \text{NullSpace} \left(A^k \right)$.
 (a) Show that for all k, $\mathcal{N}_k \subset \mathcal{N}_{k+1}$.
 (b) If for some integer p, $\mathcal{N}_p = \mathcal{N}_{p+1}$, then $\mathcal{N}_p = \mathcal{N}_q$ for all $q \geq p$.
 (c) Do the above results hold for general linear operators $A \in \mathcal{L}(V, V)$?

3. Consider a linear operator $A \in \mathcal{B}(\mathbb{C}^5, \mathbb{C}^4)$ defined by matrix multiplication: for $v \in \mathbb{C}^5$, $A(v) = Av$, where A is
\[
A = \begin{bmatrix}
1 & 2 & 1 & 1 & -1 \\
-1 & -2 & 1 & 2 & 1 \\
1 & 1 & 3 & 4 & 1 \\
1 & 1 & 1 & 1 & 1
\end{bmatrix}
\]
 (a) Find basis sets for $\text{Range}(A)$, $\text{Range}(A \circ A^*)$, $\text{Ker}(A^*)$, $\text{Ker}(A^* \circ A)$. Note these are all subspaces of \mathbb{C}^4.
 (b) Find basis sets for $\text{Range}(A^*)$, $\text{Range}(A^* \circ A)$, $\text{Ker}(A)$, $\text{Ker}(A \circ A^*)$. Note these are all subspaces of \mathbb{C}^5.
 (c) Verify that all of the orthogonality and direct sum properties hold among these subspaces.
 (d) With respect to the basis you chose for $\text{Range}(A)$ and $\text{Range}(A^*)$, find the matrix representation of the operator
\[
A|_{\text{Range}(A^*)} \to \text{Range}(A)
\]
Verify that this is an invertible operator (recall that it always is).

4. Using the data from problem 3, find the orthogonal projection onto $\text{Range}(A)$.

5. Using the data from problem 3, characterize and solve the least squares problem for $Ax = b$ with
\[
b = \begin{bmatrix}
1 \\
-4 \\
-3 \\
0
\end{bmatrix}, \quad \text{and} \quad b = \begin{bmatrix}
1 \\
0 \\
0 \\
0
\end{bmatrix}
\]
6. A particle of mass \(m(=2) \) is lying on a frictionless table. We apply a force \(u(t) \) at time \(t \). Suppose at \(t = 0 \), the particle is at rest, and (with respect to some reference on the table) the position is 0. Let \(d \) and \(v \) be the position and velocity of the particle.

(a) Show that for all \(t \geq 0 \)

\[
\begin{bmatrix}
 d(t) \\
 v(t)
\end{bmatrix} = \int_0^t \begin{bmatrix}
 \frac{1}{m} (t - \tau) \\
 \frac{1}{m}
\end{bmatrix} u(\tau) d\tau
\]

(b) Suppose we want to choose \(u \) so that at \(t = 1 \), the position and velocity satisfy \(d(1) = 2, v(1) = -1 \). Find the minimum norm force \(u \) that achieves this “transfer”, with

\[
\|u\|^2 = \int_0^1 u^2(t) dt
\]

Plot the force, displacement and velocity as functions of time.

(c) How would you modify your approach if the initial position and velocity (at \(t = 0 \)) were nonzero? What would the operator and its adjoint be?

7. Find a matrix \(A \in \mathbb{R}^{2 \times 2} \), with positive, real eigenvalues, such that for some nonzero vector \(x \), \(x^T Ax < 0 \). Can such an \(A \) be symmetric?

8. Suppose \(F \) is either \(\mathbb{R} \) or \(\mathbb{C} \). Using the matrix inversion lemma, and Schur complements, show the following: Given \(X \in F^{n \times n}, Y \in F^{n \times n} \), with \(X = X^* > 0, Y = Y^* > 0 \), and a positive integer \(r \). Show that there exist matrices \(X_2 \in F^{n \times r}, X_3 \in F^{r \times r} \) such that \(X_3 = X_3^* \) and

\[
\begin{bmatrix}
 X & X_2 \\
 X_2^* & X_3
\end{bmatrix} > 0 ,
\begin{bmatrix}
 X & X_2 \\
 X_2^* & X_3
\end{bmatrix}^{-1} = \begin{bmatrix}
 Y & ? \\
 ? & ?
\end{bmatrix}
\]

if and only if

\[
\begin{bmatrix}
 X & I_n \\
 I_n & Y
\end{bmatrix} \geq 0 ,\quad \text{rank} \left(X - Y^{-1} \right) \leq r.
\]

9. Suppose \(A \in \mathbb{C}^{n \times n} \) is Hermitian and positive definite, so \(A = A^* > 0 \). Show that

\[
\langle x, y \rangle_A := x^* Ay
\]

is an inner product on \(\mathbb{C}^n \). How/Why is the assumption of Hermitian important? How/Why is the assumption of positive-definiteness important?

10. The following is a singular value decomposition of \(A \in \mathbb{R}^{3 \times 2} \)

\[
A = \begin{bmatrix}
 3 & -4 & 0 \\
 1 & 0 & 0.1 \\
 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 1 & -\frac{\sqrt{3}}{2}
\end{bmatrix}
\]

\[
\begin{bmatrix}
 -\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{bmatrix}
\]
(a) Is $A^T A$ an invertible matrix? Is AA^T an invertible matrix?
(b) What is an eigenvalue/eigenvector decomposition of AA^T?
(c) What is an orthonormal basis for the null space of A^T?
(d) What is an orthonormal basis for the range space of A?
(e) What is an orthonormal basis for the null space of A?
(f) What is $\|A\|_{2,2}$

11. Suppose $X, Y \in \mathbb{C}^{n \times n}$, with $X = X^*>0$, and $Y = Y^* \geq 0$. Show that

$$\max_{x \in \mathbb{C}^n \atop \|x\|_2 = 1} \frac{x^* Y x}{x^* X^{-1} x} = \max_{x \in \mathbb{C}^n \atop x \neq 0} \frac{x^* Y x}{x^* X^{-1} x} = \lambda_{\max} \left(X^{1/2} Y X^{1/2} \right) = \rho (XY)$$

What if \mathbb{C} is replaced by \mathbb{R}, everywhere?

12. Suppose that $W \in \mathbb{C}^{n \times n}$, with $W = W^*$, and $L \in \mathbb{C}^{n \times n}$ is invertible. Show that $W < 0$ if and only if $L^* W L < 0$. Does the result hold when $<$ is replaced by one of $>, \leq, \geq$?

13. Find, by hand calculation the eigenvalues and the eigenvectors for the matrices

(a) $A = \begin{bmatrix} 5 & -4 \\ 12 & -9 \end{bmatrix}$

(b) $A = \begin{bmatrix} 14 & -8 \\ 24 & -14 \end{bmatrix}$

(c) $A = \begin{bmatrix} 0 & 1 \\ -9 & -4.8 \end{bmatrix}$

(d) $A = \begin{bmatrix} -2.4 & 1.8 \\ -1.8 & -2.4 \end{bmatrix}$