1. (a) Multiplying the differential equation by the integrating factor $e^{-\alpha \tau}$ and rearranging, we get

$$e^{-\alpha \tau} \dot{x}(\tau) - a e^{-\alpha \tau} x(\tau) = e^{-\alpha \tau} u(\tau).$$

Noticing that the left hand side is $\frac{d}{d\tau} e^{-\alpha \tau} x(\tau)$, we can integrate to get

$$\left[e^{-\alpha \tau} x(\tau)\right]_{\tau=0}^{t} = \int_{0}^{t} e^{-\alpha \tau} u(\tau) \, d\tau,$$

$$e^{-\alpha \tau} x(t) - x(0) = \int_{0}^{t} e^{-\alpha \tau} u(\tau) \, d\tau,$$

$$x(t) = e^{\alpha t} x_0 + \int_{0}^{t} e^{\alpha (t-\tau)} u(\tau) \, d\tau.$$

(b) Since $|\cos \theta + j \sin \theta| = 1$ for all $\theta \in \mathbb{R}$,

$$|e^{\gamma t}| = \left|e^{\text{Re}(\gamma)t}\right| |\cos \text{Im}(\gamma)t + j \sin \text{Im}(\gamma)t| = e^{\text{Re}(\gamma)t}.$$

(c) We find points where the derivative of $te^{\alpha t}$ is zero.

$$\frac{d}{dt} te^{\alpha t} = 0$$

$$e^{\alpha t} + ate^{\alpha t} = 0$$

$$1 + at = 0$$

$$t = -\frac{1}{a} = \frac{1}{|a|}.$$

For this value of t, we have $te^{\alpha t} = \frac{1}{|a|}$. It can be checked that this is a maximum value by checking the signs of the derivative.

(d) Applying the previous question to $\frac{\alpha}{2}$, we find that $te^{\alpha t} \leq \frac{2}{|a|}e^{\alpha t}$ for all $t \geq 0$. Then,

$$te^{\alpha t} = te^{\frac{\alpha}{2}t}e^{\frac{\alpha}{2}t} \leq \frac{2}{|a|}e^{\frac{\alpha}{2}t}$$

for all $t \geq 0$. So $M = \frac{2}{|a|}$ and $\alpha = \frac{a}{2}$ are the desired constants.

(e) Assuming $\text{Re}(a) \neq \alpha$,

$$|\xi(t)| = \left|\int_{0}^{t} e^{\alpha(t-\tau)} w(\tau) \, d\tau\right|$$

$$\leq \int_{0}^{t} \left|e^{\alpha(t-\tau)}\right| \left|w(\tau)\right| \, d\tau$$

$$\leq \int_{0}^{t} e^{\text{Re}(a)(t-\tau)} Me^{\alpha \tau} \, d\tau$$

$$= Me^{\text{Re}(a)t} \int_{0}^{t} e^{-(\text{Re}(a)-\alpha)\tau} \, d\tau$$

$$= \frac{M}{\text{Re}(a)-\alpha} \left[e^{\text{Re}(a)t} - e^{\alpha t}\right].$$
If \(\text{Re}(a) < \alpha \), then we can set \(M_2 = \frac{M}{\text{Re}(a) - \alpha}, \) \(\alpha_2 = \text{Re}(a) < 0. \)

If \(\text{Re}(a) > \alpha \), then we can set \(M_2 = \frac{M}{\alpha - \text{Re}(a)}, \) \(\alpha_2 = \alpha < 0. \)

Finally, if \(\text{Re}(a) = \alpha \), we find that \(|\xi(t)| \leq M t e^{\text{Re}(a)t}. \) Then, by the result of the previous part, we can set \(M_2 = \frac{2M}{|\text{Re}(a)|} \), \(\alpha_2 = \frac{\text{Re}(a)}{2} < 0. \)

(f) Let the Schur decomposition of \(A \) be \(A = Q \Lambda Q^* \), where \(Q \) is unitary, and \(\Lambda \) is upper triangular. Then we define a new state vector \(z(t) = Q^* x(t) \), so that \(\dot{z}(t) = \Lambda z(t). \) Clearly, \(\lim_{t \to \infty} x(t) = 0_{n \times 1} \) if and only if \(\lim_{t \to \infty} z(t) = 0_{n \times 1}. \)

We say \(\lambda_j \) is the \((i, j) \)th element of \(\Lambda \), so that \(\lambda_{ij} = 0 \) for \(i > j \), and \(\{\lambda_i\}_{i=1}^n \) are the eigenvalues of \(A \). We will prove the result inductively. We start by looking at the last element \(z_n(t) \) of the state vector \(z(t) \). Looking at the last row of the equation \(\dot{z}(t) = \Lambda z(t) \), we see that

\[
\dot{z}_n(t) = \lambda_{nn} z_n(t).
\]

By the results of parts (a) and (b),

\[
|z_n(t)| = |e^{\lambda_{nn} t} z_n(0)| = e^{\text{Re}(\lambda_{nn}) t} |z_n(0)|.
\]

Therefore, the state \(z_n(t) \) exponentially decays to zero for all initial conditions if and only if \(\text{Re}(\lambda_{nn}) < 0. \)

Now, suppose that we have shown that the each of the last \((n-k) \) elements, \(z_{k+1}(t), z_{k+2}(t), \ldots, z_n(t) \), of the state vector \(z(t) \) exponentially decays to zero for all initial conditions. Now we look at the \(k \)th element, \(z_k(t) \). Looking at the \(k \)th row of the equation \(\dot{z}(t) = \Lambda z(t) \), we see that

\[
\dot{z}_k(t) = \lambda_{kk} z_k(t) + w(t),
\]

where

\[
w(t) = \sum_{j=k+1}^n \lambda_{kj} z_j(t).
\]

By the result of part (a),

\[
|z_k(t)| = \left| e^{\lambda_{kk} t} z_k(0) + \int_0^t e^{\lambda_{kk} (t-\tau)} w(t) \, d\tau \right| \\
\leq \left| e^{\lambda_{kk} t} z_k(0) \right| + \int_0^t e^{\lambda_{kk} (t-\tau)} |w(t)| \, d\tau.
\]

By part (b), we know that the the first term exponentially decays to zero if and only if \(\text{Re}(\lambda_{kk}) < 0. \) Also, \(w(t) \) exponentially decays to zero, so by part (e), we know that the the second term exponentially decays to zero if \(\text{Re}(\lambda_{kk}) < 0. \) Therefore, \(z_k(t) \) exponentially decays to zero for all initial conditions if and only if \(\text{Re}(\lambda_{kk}) < 0. \)

By induction, it can be seen that \(\lim_{t \to \infty} z(t) = 0_{n \times 1} \) if and only if \(\text{Re}(\lambda_{kk}) < 0 \) for all \(k. \) Therefore, the ODE is stable if and only if all eigenvalues of \(A \) have real parts less than 0.

(g) In terms of the new state vector \(z(t) \), the ODE becomes \(\dot{z}(t) = \Lambda z(t) + Q^* u. \) We can then repeat the analysis carried out in the previous part. Suppose that we have shown that \(z_{k+1}(t), z_{k+2}(t), \ldots, z_n(t) \) exponentially decay to zero for all initial conditions. Now the \(k \)th row of the equation is

\[
\dot{z}_k(t) = \lambda_{kk} z_k(t) + w_1(t) + w_2(t),
\]
where

\[w_1(t) = \sum_{j=k+1}^{n} \lambda_{kj} z_j(t), \]

\[w_2(t) = \sum_{i=1}^{n} q_{ik} u_i(t). \]

By part (a), since \(z_k(0) = 0 \),

\[
|z_k(t)| = \left| \int_0^t e^{\lambda_{kk}(t-\tau)} (w_1(t) + w_2(t)) \, d\tau \right|
\leq \left| \int_0^t e^{\lambda_{kk}(t-\tau)} w_1(t) \, d\tau \right| + \left| \int_0^t e^{\lambda_{kk}(t-\tau)} w_2(t) \, d\tau \right|.
\]

We are assuming that the ODE is stable without forcing, so \(\text{Re}(\lambda_{kk}) < 0 \). Now \(w_1(t) \) exponentially decays to zero, so by part (e), we know that the first term exponentially decays to zero. Also, since each \(u_i(t) \) exponentially decays to zero, \(w_2 \) also exponentially decays to zero, and again by part (e), we know that the second term exponentially decays to zero. Therefore, \(z_k(t) \) also exponentially decays to zero. By induction, this is true for all \(k \). Therefore, for some constants \(M_x, \alpha_x < 0 \), the solution satisfies

\[
\|x(t)\|_\infty \leq M_x e^{\alpha_x t}.
\]

(h) The result still holds when the initial conditions are nonzero. The analysis of the previous part holds, except we now have

\[
|z_k(t)| = \left| e^{\lambda_{kk}t} z_k(0) + \int_0^t e^{\lambda_{kk}(t-\tau)} (w_1(t) + w_2(t)) \, d\tau \right|
\leq \left| e^{\lambda_{kk}t} z_k(0) \right| + \left| \int_0^t e^{\lambda_{kk}(t-\tau)} w_1(t) \, d\tau \right| + \left| \int_0^t e^{\lambda_{kk}(t-\tau)} w_2(t) \, d\tau \right|.
\]

All three terms can be shown to exponentially decay to zero.

(i) Again, we repeat the same analysis, but now suppose that we have shown that \(z_{k+1}(t), z_{k+2}(t), \ldots, z_n(t) \) are bounded by some \(M_{w_1} \) (rather than exponentially decaying). Then \(w_1(t) \) is bounded. Furthermore, if \(\|u(t)\|_\infty \) is bounded by \(M_u \), then \(w_2(t) \) is bounded by \(M_{w_2} = \|Q^*\|_{\infty, \infty} M_u \). Then

\[
\left| \int_0^t e^{\lambda_{kk}(t-\tau)} w_1(t) \, d\tau \right| \leq \int_0^t |e^{\lambda_{kk}(t-\tau)} w_1(t)| \, d\tau
\leq \int_0^t e^{\text{Re}(\lambda_{kk})(t-\tau)} M_{w_1} \, d\tau
= \frac{M_{w_1}}{\text{Re}(\lambda_{kk})} \left[1 - e^{\text{Re}(\lambda_{kk})t} \right]
\leq \frac{M_{w_1}}{\text{Re}(\lambda_{kk})}.
\]

Again, we have

\[
|z_k(t)| \leq \left| \int_0^t e^{\lambda_{kk}(t-\tau)} w_1(t) \, d\tau \right| + \left| \int_0^t e^{\lambda_{kk}(t-\tau)} w_2(t) \, d\tau \right|.
\]

Both terms are bounded, so \(z_k(t) \) is also bounded. Then it is easy to show that \(\|z(t)\|_\infty \) is bounded, and then \(\|x(t)\|_\infty \) is bounded.
(j) The result still holds when the initial conditions are nonzero. The analysis of the previous part holds, except we now have

\[|z_k(t)| \leq |e^{\lambda_k t}z_k(0)| + \left| \int_0^t e^{\lambda_k (t-\tau)}w_1(t) \, d\tau \right| + \left| \int_0^t e^{\lambda_k (t-\tau)}w_2(t) \, d\tau \right|. \]

The first term exponentially decays to zero, while the second and third terms are bounded, so \(z_k(t)\) is also bounded.

2. Let the SVD of \(A\) be

\[A = [\begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}, \]

where \(\Sigma\) is \(k \times k\). So \(A = U_1 \Sigma V_1\).

Now we want to minimise

\[
\|Ax - b\|_2 = \|U_1 \Sigma V_1 x - b\|_2 \\
= \|U^*(U_1 \Sigma V_1 x - b)\|_2 \\
= \left\| \begin{bmatrix} U_1^* (U_1 \Sigma V_1 x - b) \\ U_2^* (U_1 \Sigma V_1 x - b) \end{bmatrix} \right\|_2 \\
= \left\| \begin{bmatrix} U_1^* U_1 - U_1^* b \\ -U_2^* b \end{bmatrix} \right\|_2,
\]

since \(U_1^* U_1 = I_k\) and \(U_2^* U_1 = 0\).

Now, the last \((n-k)\) elements of this vector are \(-U_2^* b\), which is a constant. Thus, minimising the \(\| \cdot \|_2\) norm of this vector is equivalent to minimising \(\|\Sigma V_1 x - U_1^* b\|_2\). We find that this is equal to zero, for any \(x\) such that \(V_1 x = \Sigma^{-1} U_1^* b\). It can be shown that the set of all solutions to this equation is \(\{(V_1^* \Sigma^{-1} U_1^* b + V_2^* y) : y \in \mathbb{C}^{n-k}\}\). The least squares solution \(x\) with the minimum norm is then \(x = V_1^* \Sigma^{-1} U_1^* b\).

The same result can be verified by using the equations \(A^* A^* \xi = A^* b\), and \(x = A^* \xi\).

3. (a) \(A \preceq B\) and \(B \preceq A\).

\[\Rightarrow u^*(A - B)u \leq 0 \text{ and } u^*(B - A)u \leq 0 \text{ for all } u \in \mathbb{C}^n. \]

\[\Rightarrow u^*(A - B)u = 0 \text{ for all } u \in \mathbb{C}^n. \]

\[\Rightarrow A = B. \]

\[A \preceq B \text{ and } C \preceq D. \]

\[\Rightarrow u^*(A - B)u \leq 0 \text{ and } u^*(C - D)u \leq 0 \text{ for all } u \in \mathbb{C}^n. \]

\[\Rightarrow u^*((A + C) - (B + D))u \leq 0 \text{ for all } u \in \mathbb{C}^n. \]

\[\Rightarrow A + C \preceq B + D. \]

(b) \(M \succ 0\).

\[\Rightarrow u^* Mu \geq 0 \text{ for all } u \in \mathbb{C}^n. \]

\[\Rightarrow (Lv)^* M (Lv) \geq 0 \text{ for all } v \in \mathbb{C}^n. \]

\[\Rightarrow v^* (L^* M L) v \geq 0 \text{ for all } v \in \mathbb{C}^n. \]

\[\Rightarrow L^* M L \succ 0. \]

\[L^* M L \succ 0. \]

\[\Rightarrow v^* (L^* M L) v \geq 0 \text{ for all } v \in \mathbb{C}^n. \]
\((L^{-1}u)^*(L^*ML)(L^{-1}u) \geq 0 \) for all \(u \in \mathbb{C}^n \).
\(\Rightarrow u^*Mu \geq 0 \) for all \(u \in \mathbb{C}^n \).
\(\Rightarrow M \succ 0. \)

(c) \(u^*(W^*W)u = (Wu)^*(Wu) = \|Wu\|_2 \geq 0 \) for all \(u \in \mathbb{C}^n \).
\(\Rightarrow W^*W \succeq 0. \)

(d) \(u^*(W^*W)u = 0. \)
\(\Rightarrow \|Wu\|_2 = 0. \)
\(\Rightarrow Wu = 0. \)
\(\Rightarrow u = 0, \) since \(W \) has \(m \) linearly independent columns.

Therefore, \(W^*W \succ 0. \)

(e) Note that \((M^{-1})^* = M^{-1}. \)
\(M \succeq 0. \)
\(\iff (M^{-1})^*MM^{-1} \succ 0, \) by part (b) with \(L = M^{-1}. \)
\(\iff M^{-1} \succ 0. \)

(f) The given matrix \(M \) has positive, real eigenvalues (both equal to 1). However,

\[
\begin{bmatrix}
 1 & -1 \\
 0 & 1
\end{bmatrix}
\begin{bmatrix}
 1 & 10 \\
 -1 & 1
\end{bmatrix}
= -8 < 0.
\]

So the theorem is not valid when \(M \) is not Hermitian.

4. In the case of real scalars, a matrix \(M = \begin{bmatrix} m \end{bmatrix} \) is positive definite (or positive semi-definite) if \(m \) is positive (or non-negative). The lemma then asserts that, given \(s > 0 \) and \(t \), the following inequality is true for all \(k, \)

\[
sk^2 - 2tk + \frac{t^2}{s} \geq 0,
\]

with equality when \(k = \frac{t}{s}. \) If we plot the left hand side of this inequality against \(k, \) the graph will be a convex parabola which touches the \(x \)-axis at \(k = \frac{t}{s}. \).