Basic Robustness Reduction to determinant condition

Given \(\Phi \subset C^{n \times n} \), with the property that
\[
\Delta \in \Phi, \quad 0 \leq \tau \leq 1 \Rightarrow \tau \Delta \in \Phi
\]
and \(M(s) \in S^{n \times n} \).

We want to determine if \((I - M\Delta)^{-1} \in S^{n \times n} \) for all \(\Delta \in \Phi \).

This means that for \(G \in S^{n \times n} \), \(G^{-1} \in S^{n \times n} \) if and only if \(\det(G) \in \mathcal{U}_S \).

Hence, we simply need to check that
\[
\det(I - M\Delta) \in \mathcal{U}_S
\]
for all \(\Delta \in \Phi \).

This can be reduced to a (still complicated) condition that must be verified everywhere along the imaginary axes.

Theorem 59 Given \(\Phi \) and \(M \) as above. Then \(\det(I - M\Delta) \in \mathcal{U}_S \) for all \(\Delta \in \Phi \) if and only if

1. \(\det(I - M(\infty)\Delta) \neq 0 \) for all \(\Delta \in \Phi \).
2. \(\det(I - M(j\omega)\Delta) \neq 0 \) for all \(\omega \in \mathbb{R} \), and all \(\Delta \in \Phi \).

Proof: If violated, use that \(\Delta \), giving a pole at \(\infty \) (so \((I - M\Delta)^{-1} \) is improper) or on the imaginary axis.

On the other hand, if condition (which is along imaginary axes) is satisfied, we need to check it everywhere in the right-half-plane. Pick any \(\Delta \in \Phi \). Look at the function
\[
r_\tau(s) := \det(I - \tau M(s)\Delta) \in S
\]
Since \(\{M(j\omega) : \omega \in \mathbb{R}\} \cup M(\infty) \) is bounded, and \(M(\infty) \) exists (ie., \(M(j\omega) \) has a limit) for some \(0 < \bar{\tau} < 1 \),
\[
|1 - r_\tau(j\omega)| \leq \frac{1}{2}
\]
for all ω (including ∞). Hence (by Nyquist) $r_{\bar{\tau}}$ has no zeros in RHP. Now, let τ change from $\bar{\tau}$ to 1. At no ω or any τ does it pass through zero (condition). Encirclements remain 0, hence $r_1(s)$ has no zeros in RHP (or at $s = \infty$). Therefore $r_1 \in U_S$ as desired. ♡.

This still holds if we let $\hat{\Phi}$ be dynamic. Given Φ, define

$$\hat{\Phi} := \left\{ \hat{\Delta} \in S^{n \times n} : \Delta(\infty) \in \Phi, \forall \omega, \Delta(j\omega) \in \Phi \right\}.$$

Note that $\Phi \subset \hat{\Phi}$. Essentially the same proof gives:

Theorem 60 Given Φ and M as above, and $\hat{\Phi}$ defined from Φ. Then $\det \left(I - M\hat{\Delta} \right) \in U_S$ for all $\hat{\Delta} \in \hat{\Phi}$ if and only if

1. $\det \left(I - M(\infty)\Delta \right) \neq 0$ for all $\Delta \in \Phi$.
2. $\det \left(I - M(j\omega)\Delta \right) \neq 0$ for all $\omega \in \mathbb{R}$, and all $\Delta \in \Phi$.

Now, go beyond robustness of stability. What about robustness of performance? Take $M \in S^{(n+n_e) \times (n+n_d)}$, and Φ as before. We want to determine if $(I - M_{11}\Delta)^{-1} \in S^{n \times n}$ for all $\Delta \in \Phi$, and if so, is

$$\sup_{\omega \in \mathbb{R}} \bar{\sigma} \left[M_{22}(j\omega) + M_{21}(j\omega)\Delta \left(I - M_{11}(j\omega)\Delta \right)^{-1} M_{12}(j\omega) \right] < 1$$

for all $\Delta \in \Phi$.

This can be cast as a non-vanishing determinant condition as well.

Theorem 61 Given Φ, define

$$\Phi_P := \left\{ \begin{bmatrix} \Delta & 0 \\ 0 & \Delta_2 \end{bmatrix} : \Delta \in \Phi, \Delta_2 \in C^{n_d \times n_e}, \bar{\sigma}(\Delta_2) \leq 1 \right\}$$

Then, the above question is true if and only if

$$\det \left(\begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix} - M(j\omega)\Delta_P \right) \neq 0$$

for all $\Delta_P \in \Phi_P$ and $\omega \in \mathbb{R}$, including $\omega = \infty$.

173
Proof: If the determinant condition is violated, then at some \(\bar{\omega} \) (possibly \(\infty \)) there is a \(\bar{\Delta}_P \in \Phi_P \) that causes singularity. Recall that \(\bar{\Delta}_P \) is of the form

\[
\begin{bmatrix}
\bar{\Delta} & 0 \\
0 & \bar{\Delta}_2
\end{bmatrix}
\]

where \(\bar{\Delta} \in \Phi \) and where \(\bar{\Delta}_2 \in \mathbb{C}^{n_d \times n_c} \) with \(\bar{\sigma}(\bar{\Delta}_2) \leq 1 \). If \(I - M_{11}(\bar{\omega}) \bar{\Delta} \) is singular, then simply use it to create an unstable \((I - M_{11}\Delta)^{-1} \). If \(I - M_{11}(\bar{\omega}) \bar{\Delta} \) is not singular, then recall from our determinant formulae that

\[
\det \left(\begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix} - M(j\bar{\omega})\bar{\Delta}_P \right) = \det [I - M_{11}(j\bar{\omega})\bar{\Delta}] \det \left[I - M_{22}(j\bar{\omega})\bar{\Delta}_2 - M_{21}(j\bar{\omega})\bar{\Delta}(I - M_{11}(j\bar{\omega})\bar{\Delta})^{-1} M_{12}(j\bar{\omega})\bar{\Delta}_2 \right]
\]

Since this is 0, the 2nd term must be zero (the first isn’t), and since \(\bar{\sigma}(\bar{\Delta}_2) \leq 1 \) it must be that

\[
\bar{\sigma} \left[M_{22}(j\bar{\omega}) + M_{21}(j\bar{\omega})\bar{\Delta}(I - M_{11}(j\bar{\omega})\bar{\Delta})^{-1} M_{12}(j\bar{\omega}) \right] \geq 1
\]

(here we use that if \(I - AB \) is singular, and \(\bar{\sigma}(B) \leq 1 \), then it must be that \(\bar{\sigma}(A) \geq 1 \)).

The reverse argument is essentially the same, and you should do it. \(\sharp \).

By the exact same reasoning used earlier, the theorem claim can be extended to \(\hat{\Phi} \) while the checking of the non-vanishing determinant still takes place only on \(\Phi \).

Conclusion: We have reduced all of these questions to frequency-dependent checking of non-vanishing determinants of an expression \(I - M\Psi \) where \(M \) is fixed, and \(\Psi \) lives in a set. That new problem becomes the focus of our attention. It is referred to “structured singular value” theory, and involves much/most of the linear algebra and convexity ideas that we have learned.