Output Feedback Stabilization problem

Given matrices $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times n_u}$, $C \in \mathbb{R}^{n_y \times n}$.

Define n’th order, linear system P

$$
\dot{x}(t) = Ax(t) + Bu(t) \\
y(t) = Cx(t)
$$

Goal: find all (if any) finite dimensional, linear feedback controllers, K

$$
\dot{\eta}(t) = \bar{A}\eta(t) + \bar{B}y(t) \\
u(t) = \bar{C}\eta(t) + \bar{D}y(t)
$$

such that the closed-loop system

$$
\begin{bmatrix}
\dot{x} \\
\dot{\eta}
\end{bmatrix} =
\begin{bmatrix}
A + B\bar{D}C & B\bar{C} \\
\bar{B}C & \bar{A}
\end{bmatrix}
\begin{bmatrix}
x \\
\eta
\end{bmatrix}.
$$
Internal Stabilization

More generally, consider \(n \)’th order, linear system \(G \) with two types of inputs and two types of outputs,

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + B_1 d(t) + B_2 u(t) \\
e(t) &= C_1 x(t) + D_{11} d(t) + D_{12} u(t) \\
y(t) &= C_2 x(t) + D_{21} d(t)
\end{align*}
\]

Goal: find all (if any) finite dimensional, linear feedback controllers, \(K \)

\[
\begin{align*}
\dot{\eta}(t) &= \bar{A}\eta(t) + \bar{B} y(t) \\
u(t) &= \bar{C}\eta(t) + \bar{D} y(t)
\end{align*}
\]

such that the closed-loop system

is internally stable. Easy to check that closed-loop dynamics are

\[
\begin{bmatrix}
\dot{x}(t) \\
\dot{\eta}(t) \\
e(t)
\end{bmatrix} =
\begin{bmatrix}
A + B_2 \bar{D} C_2 & B_2 \bar{C} & B_1 + B_2 \bar{D} D_{21} \\
\bar{B} C_2 & \bar{A} & \bar{B} D_{21} \\
C_1 + D_{12} \bar{D} C_2 & D_{12} \bar{C} & D_{11} + D_{12} \bar{D} D_{21}
\end{bmatrix}
\begin{bmatrix}
x(t) \\
\eta(t) \\
d(t)
\end{bmatrix}
\]

and internal stability of closed-loop system is governed by the eigenvalues of

\[
\begin{bmatrix}
A + B_2 \bar{D} C_2 & B_2 \bar{C} \\
\bar{B} C_2 & \bar{A}
\end{bmatrix}
\]
Stabilization by Dynamic Output feedback

In the first case (only inputs/outputs are controls/measurements), the closed-loop “A” matrix decomposes as

\[
\begin{bmatrix}
A + B\tilde{D}C & B\tilde{C} \\
\tilde{B}C & \tilde{A}
\end{bmatrix}
=
\begin{bmatrix}
A & 0 \\
0 & 0_m
\end{bmatrix}
+
\begin{bmatrix}
B & 0 \\
0 & I_m
\end{bmatrix}
\begin{bmatrix}
\tilde{D} & \tilde{C} \\
\tilde{B} & \tilde{A}
\end{bmatrix}
\begin{bmatrix}
C & 0 \\
0 & I_m
\end{bmatrix}
\]

In the second case, with two types of inputs/outputs, the closed-loop “A” matrix decomposes as

\[
\begin{bmatrix}
A + B_2\tilde{D}C_2 & B_2\tilde{C} \\
\tilde{B}C_2 & \tilde{A}
\end{bmatrix}
=
\begin{bmatrix}
A & 0 \\
0 & 0_m
\end{bmatrix}
+
\begin{bmatrix}
B_2 & 0 \\
0 & I_m
\end{bmatrix}
\begin{bmatrix}
\tilde{D} & \tilde{C} \\
\tilde{B} & \tilde{A}
\end{bmatrix}
\begin{bmatrix}
C_2 & 0 \\
0 & I_m
\end{bmatrix}
\]

which is structurally identical, with \(B_2\) replacing by \(B\), and so on.

Since they are the “same,” use the simpler notation, and consider the first case to derive all stabilizing controllers.

The dynamic, output-feedback stabilization problem is: Given the matrices \(A\), \(B\), and \(C\), find, if they exist, an integer \(m \geq 0\), and a matrix \(M \in \mathbb{R}^{(n_u+m)\times(n_y+m)}\) such that

\[
\begin{bmatrix}
A & 0 \\
0 & 0_m
\end{bmatrix}
+
\begin{bmatrix}
B & 0 \\
0 & I_m
\end{bmatrix}
M
\begin{bmatrix}
C & 0 \\
0 & I_m
\end{bmatrix}
\]

is Hurwitz.
Stabilizability

Definition 1 The pair of matrices \((A, B)\) is \textbf{stabilizable} if there a matrix
\(F \in \mathbb{R}^{n_u \times n}\) such that \(A + BF\) is Hurwitz (i.e., all eigenvalues have negative
real part). Such a matrix \(F\) will be referred to as a \textbf{stabilizing state}
feedback for the pair \((A, B)\).

Remark 1: The non-dynamic state-feedback \(u(t) = Fx(t)\) stabilizes the system
\[\dot{x}(t) = Ax(t) + Bu(t). \]

Remark 2: Recall that \(A \in \mathbb{R}^{n \times n}\) is Hurwitz if and only if there exists
\(P \in \mathbb{R}^{n \times n}, P = P^T > 0\), such that \(A^T P + PA < 0\). Hence, an equivalent
statement of stabilizability of \((A, B)\) is: there exists \(P_F \in \mathbb{R}^{n \times n}, P_F =
P_F^T > 0\), and a matrix \(F \in \mathbb{R}^{n_u \times n}\) such that
\[(A + BF)^T P_F + P_F (A + BF) < 0. \] \hspace{1cm} (1.2)

Remark 3: Another equivalent characterization of stabilizability: The matrix
\([A - \lambda I \ B]\) has full row rank for all \(\lambda \in \mathbb{C}\), with \(\text{Re}(\lambda) \geq 0\).
Theorem 2 The pair \((A, B)\) is stabilizable if and only if there exist \(W \in \mathbb{R}^{n \times n}\) and \(R \in \mathbb{R}^{n_u \times n}\) such that \(W = W^T > 0\), and
\[
AW + WA^T + BR + R^T B^T < 0.
\] (1.3)

Proof:

\(\rightarrow\) By assumption, there exist matrices \(F \in \mathbb{R}^{n_u \times n}\) and \(P_F \in \mathbb{R}^{n \times n}, P_F = P_F^T > 0\) such that
\[
(A + BF)^T P_F + P_F (A + BF) < 0.
\]
Define \(W := P_F^{-1}\). Note that \(W \in \mathbb{R}^{n \times n}, W = W^T > 0\). Also define \(R := FW\). Then
\[
AW + WA^T + BR + R^T B^T < 0.
\]

\(\leftarrow\) The argument given above is reversed. \textcircled{12}
Theorem 3 Let \(m \geq 0 \). Define matrices \(A_m^e \) and \(B_m^e \) as

\[
A_m^e := \begin{bmatrix} A & 0 \\ 0 & 0_m \end{bmatrix}, \quad B_m^e := \begin{bmatrix} B & 0 \\ 0 & I_m \end{bmatrix}
\]

Then \((A, B)\) is stabilizable if and only if \((A_m^e, B_m^e)\) is stabilizable.

Proof

← Using Theorem 2, there must exist \(0 \prec W^e \in \mathbb{R}^{(n+m) \times (n+m)} \), and \(R^e \in \mathbb{R}^{(n_u+m) \times (n+m)} \),

\[
W^e = \begin{bmatrix} W_{11} & W_{12} \\ W_{12}^T & W_{22} \end{bmatrix}, \quad R^e = \begin{bmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{bmatrix}
\]

such that

\[
A_m^e W^e + W^e A_m^e T + B_m^e R^e + R^e T B_m^e T \prec 0. \tag{1.4}
\]

Note \(W_{11} = W_{11}^T \succ 0 \). Obviously, the \((1, 1)\) block of equation 1.4 is negative definite, specifically,

\[
AW_{11} + W_{11} A^T + BR_{11} + R_{11} B^T \prec 0.
\]

Using Theorem 2, this means that the pair \((A, B)\) is stabilizable.

→ Let \(F \) be such that \(A + BF \) is Hurwitz. Define

\[
F_m^e := \begin{bmatrix} F & 0 \\ 0 & -I_m \end{bmatrix}
\]

Then

\[
A_m^e + B_m^e F_m^e = \begin{bmatrix} A + BF & 0 \\ 0 & -I_m \end{bmatrix}
\]

which is clearly Hurwitz, as desired.

Detectability

The properties for detectability are similar to those of stabilizability.

Definition 4 The pair of matrices \((A, C)\) is detectable if there exists a matrix \(L \in \mathbb{R}^{n \times n_y}\) such that \(A + LC\) is Hurwitz.

Remark: In this situation, the observer (with non-dynamic processing of the residual \(y - C\hat{x}\))

\[
\dot{\hat{x}} = A\hat{x} - L(y - C\hat{x})
\]

yields a exponentially stable estimate of the state \(x\) for the system

\[
\begin{align*}
\dot{x} &= Ax \\
y &= Cx.
\end{align*}
\]

Theorem 5 The pair \((A, C)\) is detectable if and only if there exist \(P \in \mathbb{R}^{n \times n}, P = P^T \succ 0\), and a matrix \(H \in \mathbb{R}^{n \times n_y}\) such that

\[
A^T P + PA + HC + C^T H^T \prec 0 \tag{1.5}
\]

As in the state-feedback problem, dynamic extension does not make the observation problem any easier.

Theorem 6 Let \(m\) be any nonnegative integer. Define matrices \(A^e_m\) and \(C^e_m\) as

\[
A^e_m := \begin{bmatrix} A & 0 \\ 0 & 0_m \end{bmatrix}, \quad C^e_m := \begin{bmatrix} C & 0 \\ 0 & I_m \end{bmatrix}
\]

Then \((A, C)\) is detectable if and only if \((A^e_m, C^e_m)\) is detectable.
Theorem 7 Given open-loop state space data A, B, and C. There exist an integer $m \geq 0$, and a matrix $M \in \mathbb{R}^{(n_u+m) \times (n_y+m)}$ such that $(A^e_m + B^e_mMC^e_m)$ is Hurwitz if and only if

1. the pair (A, B) is stabilizable, and
2. the pair (A, C) is detectable.

Furthermore, if these two conditions hold, then there exist

1. $F \in \mathbb{R}^{n_u \times n}$ such that $(A + BF)$ is Hurwitz
2. $L \in \mathbb{R}^{n \times n_y}$ such that $(A + LC)$ is Hurwitz

and

$$
\begin{bmatrix}
\dot{\eta} \\
u
\end{bmatrix} =
\begin{bmatrix}
A + BF + LC & -L \\
F & 0
\end{bmatrix}
\begin{bmatrix}
\eta \\
y
\end{bmatrix} =
\begin{bmatrix}
\tilde{A} & \tilde{B} \\
\tilde{C} & \tilde{D}
\end{bmatrix}
\begin{bmatrix}
\eta \\
y
\end{bmatrix}
$$

is a exponentially stabilizing, output-feedback controller.
Proof

→ Viewing the Hurwitz matrix $A^e_m + B^e_mMC^e_m$ as

\[
A^e_m + B^e_mMC^e_m
\]

it is clear that the pair (A^e_m, B^e_m) is stabilizable, and the pair (A^e_m, C^e_m) is detectable. Hence, by Theorems 3 and 6, the pair (A, B) is stabilizable, and the pair (A, C) is detectable.

← Take $\bar{D} := 0, \bar{C} := F, \bar{B} := -L$ and $\bar{A} := A + BF + LC$, and define

\[
M := \begin{bmatrix}
\bar{D} & \bar{C} \\
\bar{B} & \bar{A}
\end{bmatrix}.
\]

With this state-space realization for a feedback controller, the closed-loop dynamics are governed by

\[
A_{clp} := A^e_m + B^e_mMC^e_m = \begin{bmatrix}
A & BF \\
-LC & A + BF + LC
\end{bmatrix}.
\]

Define an invertible matrix $T \in \mathbb{R}^{2n \times 2n}$ as

\[
T := \begin{bmatrix}
I_n & -I_n \\
0 & I_n
\end{bmatrix}
\]

Note that

\[
TA_{clp}T^{-1} = \begin{bmatrix}
A + LC & 0 \\
-LC & A + BF
\end{bmatrix},
\]

which is clearly Hurwitz. \#.
all stabilizing controllers

Theorem 8 Let A, B, C be the open-loop state-space data. Assume (A, B) is stabilizable and (A, C) is detectable. So, choose matrices $F \in \mathbb{R}^{n_u \times n}$, and $L \in \mathbb{R}^{n \times n_y}$ such that $A + BF$ and $A + LC$ are Hurwitz.

For every internally stabilizing controller $(\bar{A}, \bar{B}, \bar{C}, \bar{D})$, there exists a stable system (A_Q, B_Q, C_Q, D_Q) such that a realization of the controller, possibly with stable, yet uncontrollable and/or unobservable modes is:

$$
\begin{bmatrix}
\dot{\eta}_o \\
\dot{\eta}_Q \\
u
\end{bmatrix} =
\begin{bmatrix}
A + BF + LC + BD_QC & BC_Q & -L - BD_Q \\
B Q C & A_Q & -B_Q \\
F + D_Q C & C_Q & -D_Q
\end{bmatrix}
\begin{bmatrix}
\eta_o \\
\eta_Q \\
y
\end{bmatrix}
$$

(1.6)

Moreover, for every choice of stable system (A_Q, B_Q, C_Q, D_Q), the formula above is a stabilizing controller.

A block diagram of this controller structure is shown below:
Suppose A_Q, B_Q, C_Q and D_Q are matrices of appropriate dimensions, with A_Q Hurwitz. Implement the state-space parametrization of the controller given above in equation 1.6 (as in the figure above). The closed-loop A matrix, A_{clp}, is

$$
A_{clp} = \begin{bmatrix}
A - BD_Q C & B (F + D_Q C) & BC_Q \\
-(L + BD_Q) C & A + BF + LC + BD_Q C & BC_Q \\
-B_Q C & B_Q C & A_Q
\end{bmatrix}
$$

Define an invertible matrix T as

$$
T := \begin{bmatrix}
I_n & -I_n & 0 \\
0 & 0 & I_{nQ} \\
0 & I_n & 0
\end{bmatrix}
$$

Then,

$$
TA_{clp}T^{-1} = \begin{bmatrix}
A + LC & 0 & 0 \\
-B_Q C & A_Q & 0 \\
-(L + BD_Q) C & BC_Q & A + BF
\end{bmatrix}
$$

By assumption, each of the blocks on the diagonal are Hurwitz, so the closed-loop matrix A_{clp} is Hurwitz as well.
Proof

Suppose that $(\bar{A}, \bar{B}, \bar{C}, \bar{D})$ is a realization of a exponentially stabilizing controller, with state dimension $m \geq 0$. Then, the matrix

$$A_m^e + B_m^e \begin{bmatrix} \bar{D} & \bar{C} \\ \bar{B} & \bar{A} \end{bmatrix} C_m^e$$

is Hurwitz, and define A_Q to be it. Define $D_Q := -\bar{D}$, and

$$B_Q := \begin{bmatrix} L - B\bar{D} \\ -\bar{B} \end{bmatrix}, C_Q := \begin{bmatrix} -F + \bar{D}C & \bar{C} \end{bmatrix}, T := \begin{bmatrix} I_n & -I_n & 0 \\ 0 & I_n & 0 \\ 0 & 0 & I_m \end{bmatrix}$$

Plugging in to the (claimed) parametrization gives

$$\begin{bmatrix} \dot{\eta}_0 \\ \dot{\eta}_{Q_1} \\ \dot{\eta}_{Q_2} \\ u \end{bmatrix} = \begin{bmatrix} A + BF + LC - B\bar{D}C & B(-F + \bar{D}C) & B\bar{C} & -L + B\bar{D} \\ (L - B\bar{D})C & A + B\bar{D}C & B\bar{C} & -L + B\bar{D} \\ -\bar{B}C & \bar{B}C & \bar{A} & \bar{B} \\ F - \bar{D}C & -F + \bar{D}C & \bar{C} & \bar{D} \end{bmatrix} \begin{bmatrix} \eta_0 \\ \eta_{Q_1} \\ \eta_{Q_2} \\ y \end{bmatrix}$$

After applying the coordinate transformation T, the state equations become

$$\begin{bmatrix} \dot{\eta}_0 - \dot{\eta}_{Q_1} \\ \dot{\eta}_{Q_1} \\ \dot{\eta}_{Q_2} \\ u \end{bmatrix} = \begin{bmatrix} A + BF & 0 & 0 & 0 \\ (L - B\bar{D})C & A + LC & B\bar{C} & -L + B\bar{D} \\ -\bar{B}C & 0 & \bar{A} & \bar{B} \\ F - \bar{D}C & 0 & \bar{C} & \bar{D} \end{bmatrix} \begin{bmatrix} \eta_0 - \eta_{Q_1} \\ \eta_{Q_1} \\ \eta_{Q_2} \\ y \end{bmatrix}$$

The first states are exp. stable, and uncontrollable. Eliminate, leaving

$$\begin{bmatrix} \dot{\eta}_{Q_1} \\ \dot{\eta}_{Q_2} \\ u \end{bmatrix} = \begin{bmatrix} A + LC & B\bar{C} & -L + B\bar{D} \\ 0 & \bar{A} & \bar{B} \\ 0 & \bar{C} & \bar{D} \end{bmatrix} \begin{bmatrix} \eta_{Q_1} \\ \eta_{Q_2} \\ y \end{bmatrix}$$

(1.7)
The first states are exp. stable, and unobservable. Eliminate, leaving

$$\begin{bmatrix} \dot{\eta}_{Q_2} \\ u \end{bmatrix} = \begin{bmatrix} \bar{A} & \bar{B} \\ \bar{C} & \bar{D} \end{bmatrix} \begin{bmatrix} \eta_{Q_2} \\ y \end{bmatrix}$$

which is the exponentially stabilizing controller K, as claimed. ♦
Consider the plant G with two types of inputs and two types of outputs,

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + B_1d(t) + B_2u(t) \\
e(t) &= C_1x(t) + D_{11}d(t) + D_{12}u(t) \\
y(t) &= C_2x(t) + D_{21}d(t)
\end{align*}
\]

Base stabilization on the triple (A, B_2, C_2). Erase Q from the parameterization, introduce two signals, w and z, and define J as

\[
\begin{align*}
\dot{\eta}_o(t) &= (A + B_2F + LC_2)\eta_o(t) - Ly(t) + B_2w(t) \\
u(t) &= F\eta_o(t) + w(t) \\
z(t) &= C_2\eta_o(t) - y(t)
\end{align*}
\]
Verify that T, above right, is

$$
T = \begin{bmatrix}
A & B_2 F & B_1 & B_2 \\
-LC_2 & A + B_2 F + LC_2 & -LD_{21} & B_2 \\
C_1 & D_{12} F & D_{11} & D_{12} \\
-C_2 & C_2 & -D_{21} & 0
\end{bmatrix}
$$

Moreover, the $(2,2)$ entry of the operator T is 0,

$$
T_{22} = \begin{bmatrix}
A & B_2 F & B_2 \\
-LC_2 & A + B_2 F + LC_2 & -LD_{21} & B_2 \\
-C_2 & C_2 & 0 \\
A + LC_2 & 0 & 0 \\
-LC_2 & A + B_2 F & B_2 \\
-C_2 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 0 \\
0 & 0
\end{bmatrix} = 0.
$$

The closed-loop operator from d to e involves the free parameter Q in feedback around the “bottom” of T.

The $(2,2)$ entry of T is zero, hence, for all exponentially stabilizing, FDLTI
controllers, the zero-state, closed-loop operator from \(d \) to \(e \) is an affine function of the free parameter \(Q \).
The history of this parameterization is long, and covers many interesting periods. The most well-known references are:

Youla, Jabr, Bongiorno (1976, vol. 21, page 319-338, IEEE Transactions on Automatic Control);

The presentation in this section is slightly different, but the main ideas can be found in

