ME 234, MIMO Youla Parametrization Problems

1. Find an SISO plant that cannot be stabilized with constant-gain (proportional) feedback, but can be stabilized with dynamic feedback.

2. Consider a “plant” governed by the equations

\[
\begin{bmatrix}
\dot{x}(t) \\
e(t) \\
y(t)
\end{bmatrix} =
\begin{bmatrix}
A & B_1 & B_2 \\
C_1 & D_{11} & D_{12} \\
C_2 & D_{21} & 0
\end{bmatrix}
\begin{bmatrix}
x(t) \\
d(t) \\
u(t)
\end{bmatrix}
\]

and a controller governed by

\[
\begin{bmatrix}
\dot{\eta}(t) \\
u(t)
\end{bmatrix} =
\begin{bmatrix}
A_c & B_c \\
C_c & D_c
\end{bmatrix}
\begin{bmatrix}
\eta(t) \\
y(t)
\end{bmatrix}
\]

Find a clean expression for the closed loop state-space matrix, i.e., the matrix \(M \) in the expression

\[
\begin{bmatrix}
\dot{x}(t) \\
\dot{\eta}(t) \\
e(t)
\end{bmatrix} =
M
\begin{bmatrix}
x(t) \\
\eta(t) \\
d(t)
\end{bmatrix}
\]

In your expression for \(M \), isolate the plant matrices from the controller matrices. Your answer should appear as \(R + UQV \), where the entries of \(R, U \) and \(V \) depend on the plant (though the dimensions of some zero and identity matrices depend on the controller’s dimension) and \(Q \) only depends on the controller.

3. Suppose \(\lambda \in \mathbb{C} \) with \(\text{Re}(\lambda) \geq 0 \), and \((A, B)\) is stabilizable and \((A, C)\) is detectable. Show that \(\lambda \) is a pole of \(G(s) := C (sI - A)^{-1} B \) if and only if \(\lambda \) is an eigenvalue of \(A \).

4. In this problem, we explore the stability of an interconnection of \(N \) linear systems, \(G_1, G_2, \ldots, G_N \). Suppose that \((A_i, B_i, C_i)\) is a stabilizable and detectable state-space realization of a multi-input/multi-output subsystem \(G_i \). Let \(x_i, u_i \) and \(y_i \) be the state, input and output of subsystem \(G_i \), so that

\[
\begin{align*}
\dot{x}_i(t) &= A_ix_i(t) + B_iu_i(t) \\
y_i(t) &= C_ix_i(t)
\end{align*}
\]

An interconnection of the subsystems is when the input to any subsystem is a linear combination of all of the outputs of the subsystems along with an additional external input \(v \)

\[
u_i(t) := v_i(t) + \sum_{j=1}^{N} K_{ij}y_j(t)\]
where the matrices \(\{K_{ij}\}_{i,j=1}^N \) are constant matrices (of appropriate dimension) called the interconnection matrices, and the \(v_i \) is called a junction input. Show that the interconnection (closed-loop system) is internally stable (ie., the closed-loop \(A \) matrix has all eigenvalues in the open-left-half plane) if and only if the transfer function matrix from \(v \) to \(y \) has all of its poles in the open-left-half plane. **Hint:** \((A, B)\) is stabilizable if and only if \((A + BF, B)\) is stabilizable for every \(F \).

5. For each of the realizations given below, determine if (independent of the \((A, B, C)\) data given) there are unobservable, or uncontrollable states, and if so, eliminate them to get a lower order realization

\[
\begin{bmatrix}
 A_{11} & 0 & 0 \\
 A_{21} & A_{22} & B_2 \\
 C_1 & C_2 & D
\end{bmatrix},
\begin{bmatrix}
 A_{11} & 0 & B_1 \\
 A_{21} & A_{22} & 0 \\
 C_1 & C_2 & D
\end{bmatrix}
\]

\[
\begin{bmatrix}
 A_{11} & 0 & B_1 \\
 A_{21} & A_{22} & B_2 \\
 C_1 & 0 & D
\end{bmatrix},
\begin{bmatrix}
 A_{11} & 0 & B_1 \\
 A_{21} & A_{22} & B_2 \\
 0 & C_2 & D
\end{bmatrix}
\]

\[
\begin{bmatrix}
 A_{11} & A_{12} & 0 \\
 0 & A_{22} & B_2 \\
 C_1 & C_2 & D
\end{bmatrix},
\begin{bmatrix}
 A_{11} & A_{12} & B_1 \\
 0 & A_{22} & 0 \\
 C_1 & C_2 & D
\end{bmatrix}
\]

\[
\begin{bmatrix}
 A_{11} & A_{12} & B_1 \\
 0 & A_{22} & B_2 \\
 C_1 & 0 & D
\end{bmatrix},
\begin{bmatrix}
 A_{11} & A_{12} & B_1 \\
 0 & A_{22} & B_2 \\
 0 & C_2 & D
\end{bmatrix}
\]

6. Using equations (5.9) and (5.10), verify that (5.11) is indeed a realization for \(T \).

7. Suppose the plant \(P \) is stable. Consider a 2 degree-of-freedom configuration as shown below.

Using the general parametrization we derived, show that all stabilizing 2-dof con-
trollers can be expressed as

\[Q \text{ is any stable system, of dimension } n_u \times (n_r + n_y). \]

(a) Assume further that \(P \) is single-input, single-output (SISO). Denote the transfer function of \(Q \) as \([Q_1(s) \ Q_2(s)] \). Write the closed-loop transfer functions, in terms of \(P \) and \(Q_i \) for the system shown below. Write the transfer functions in a \(2 \times 3 \) matrix form, relating \([r; d; n]\) to \([u; y]\).

(b) Using Matlab (or Ptolemy), build your own tools for this (stable plant, 2-dof design, allow for MIMO plants), in m-files and/or Simulink.

(c) Suppose \(P = -0.3s + 1 \). Pick \(Q_2 \) so that \(|1 - PQ_2|\) is very small (compared to 1) in the frequency range \([0 1]\), and less than 2 for the entire frequency range. Pick \(Q_1 \) so that the controller actually processes \(r - y \), and not \(r \) and \(y \) individually. Do some simulations and/or frequency responses, and assess your design.

8. Suppose that \(A_{22} \) is Hurwitz, and a state-space model for a plant \(P \) is

\[
\begin{bmatrix}
\dot{x}_1(t) \\
\dot{x}_2(t) \\
y(t)
\end{bmatrix} =
\begin{bmatrix}
A_{11} & 0 & B_1 \\
A_{21} & A_{22} & B_2 \\
C_1 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
x_1(t) \\
x_2(t) \\
u(t)
\end{bmatrix}
\]

Let the dimensions of \(x_1 \) and \(x_2 \) be \(n_1 \) and \(n_2 \) respectively. Find a parametrization of all stabilizing controllers for \(P \) of the form \(F_L(J, Q) \) where \(J \) has a \(n_1 \)th order state-space realization.

9. Consider the generalized MIMO “plant” in equation (??). Note that the 2, 2 element of \(D \) is defined to be 0. Suppose it is nonzero, using \(D_{22} \) to denote this matrix. Define new control inputs/sensed outputs as

\[
\begin{align*}
\tilde{u}(t) & := u(t) \\
\tilde{y}(t) & := y(t) - D_{22}u(t)
\end{align*}
\]

and let \(\tilde{P} \) be the system relating \(d \) and \(\tilde{u} \) to \(e \) and \(\tilde{y} \). Note that \(\tilde{P} \) has a identically zero “\(D_{22} \)” term. Parametrize all stabilizing controllers (processing \(\tilde{y} \), generating \(\tilde{u} \)) for \(\tilde{P} \). Explain how to “map” a stabilizing controller for \(\tilde{P} \) back into a stabilizing controller for \(P \). Are there any restrictions on \(D_Q \) so that various inverses exist?
10. The presentation in Section 2 concerned linear, time-invariant (LTI) plants and controllers. Everything goes through to the linear, time-varying (LTV) case as well. Suppose that $A : \mathbb{R}_+ \rightarrow \mathbb{R}^{n \times n}$ is piecewise continuous, and bounded. Similar for $B(\cdot)$ and $C(\cdot)$.

Definition: Time-Varying Exponential Stability. Suppose $A : \mathbb{R}_+ \rightarrow \mathbb{R}^{n \times n}$ is piecewise continuous, and bounded. Define A (or more precisely, the linear system $\dot{x} = Ax$) to be exponentially stable if there exists a differentiable function $P : \mathbb{R}_+ \rightarrow \mathbb{R}^{n \times n}$, constants $\gamma > 0$, and $0 < \alpha \leq \beta < \infty$ with $\alpha I \leq P(t) = P^T(t) \leq \beta I$ and

$$\dot{P}(t) + A^T(t)P(t) + P(t)A(t) \leq -\gamma I$$

for all $t \geq 0$. This seems unnatural, as a definition should more directly associate with a single exponentially decaying bound on all of the solutions to the differential equation $\dot{x}(t) = A(t)x(t)$. In fact, these are equivalent, and the quadratic Lyapunov characterization of exponential stability, in terms of P, is correct (see Vidyasagar, *Nonlinear Systems Analysis*, 2nd Edition, Prentice Hall, 1993, pp. 202-204, for instance).

Verify these facts below:

(a) Suppose $0 < \alpha_i < \beta_i < \infty$ for $i = 1, 2$, and $X_i \in \mathbb{R}^{n_i \times n_i}$ with $X_i = X_i^T$. Further, assume that

$$-\beta_1 I \leq X_1 \leq -\alpha_1 I$$

$H \in \mathbb{R}^{n_1 \times n_2}$ is given. Show that there is an $\epsilon > 0$ such that

$$\begin{bmatrix} X_1 & \epsilon H \\ \epsilon H^T & \epsilon X_2 \end{bmatrix} < 0$$

(b) $A_i : \mathbb{R}_+ \rightarrow \mathbb{R}^{n_i \times n_i}$ are piecewise continuous, bounded and exponentially stable for $i = 1, 2$. Also suppose that $V : \mathbb{R}_+ \rightarrow \mathbb{R}^{n_2 \times n_1}$ is piecewise continuous and bounded. Then

$$\begin{bmatrix} A_1 & 0 \\ V & A_2 \end{bmatrix}$$

is exponentially stable.

(c) Suppose that $F(\cdot)$ is bounded, piecewise continuous function such that $A + BF$ is exponentially stable. Similarly, suppose that that $L(\cdot)$ is bounded, piecewise continuous function such that $A + LC$ is exponentially stable. Show that the controller involving F and L is exponentially stabilizing.

(d) In this part, use the F and L above. If $A_Q : \mathbb{R}_+ \rightarrow \mathbb{R}^{n_Q \times n_Q}$ is piecewise continuous, bounded and exponentially stable, $B_Q : \mathbb{R}_+ \rightarrow \mathbb{R}^{n_Q \times n_y}$, $C_Q : \mathbb{R}_+ \rightarrow \mathbb{R}^{n_u \times n_Q}$, $D_Q : \mathbb{R}_+ \rightarrow \mathbb{R}^{n_u \times n_y}$, all piecewise continuous and bounded, then the state-space formula in equation of all stabilizing controllers is an exponentially stabilizing LTV controller.
(e) Conversely, if $A_K(t), B_K(t), C_K(t), D_K(t)$ are the state-space matrices of a exponentially stabilizing LTV controller, with all entries bounded and piecewise continuous, then there is an exponentially stable LTV system Q (with bounded, piecewise continuous state-space matrices A_Q, B_Q, C_Q, D_Q) such that the given formula is a realization of $A_K(t), B_K(t), C_K(t), D_K(t)$, with possibly some extra stable, uncontrollable and/or unobservable modes.

11. Improperly switching between stabilizing LTI controllers can lead to an unstable time-varying system. However, the controller architecture can always be chosen so that arbitrary switching is ok (at least from a stability point of view). Suppose that $K_1(s), K_2(s), \ldots, K_N(s)$ are each stabilizing controllers (each K_i is finite dimensional, linear, time-invariant) for a linear, time-invariant P. Describe an implementation that has all of the LTI controllers, which is stabilizing for arbitrary switching among the controllers.